skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Yanhua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We report a photo-triggered, base generating, base propagating degradable polyurethane that is triggered by 365 nm UV light irradiation. A small area of this polyurethane material can be exposed to 365 nm UV light irradiation to generate basic species that can initiate a base propagated degradation process within the bulk material leading to global degradation without the need for continous UV irradiation. The polymer was synthesized by a polycondensation polymerization of a small amount of o -nitrobenzene diol 2 , a large amount of Fmoc-based diol 3 , and hexylmethylene diisocyanate. Integrating both photosensitive and base-sensitive carbamate moieties into the polymer 1 backbone provides the UV light-triggered base propagating degradable polyurethane material. Degradation studies of polymer 1 using 1 H NMR and gel permeation chromatography (GPC) suggest that initial UV irradiation triggers the degradation of the photosensitive o -nitrobenzene carbamate linkages, releasing a primary amino group that causes a cascade of amines to form by further degrading the remaining Fmoc carbamate groups. A bulk polyurethane film was prepared using Fmoc-based triol 4 as a monomer. UV-irradiation of a small localized area of the film initiates the propagation throughout, leading to efficient bulk degradation of the entire material. The amine degradation products could be utilized to make a one-pot epoxy adhesive, showing a potential upcycling application of this self-propagating degradable polyurethane system. 
    more » « less
  2. A new type of base-triggered self-amplifying degradable polyurethane is reported that degrades under mild conditions, with the release of increasing amounts of amine product leading to self-amplified degradation. The polymer incorporates a base-sensitive Fmoc-derivative into every repeating unit to enable highly sensitive amine amplified degradation. A sigmoidal degradation curve for the linear polymer was observed consistent with a self-amplifying degradation mechanism. An analogous cross-linked polyurethane gel was prepared and also found to undergo amplified breakdown. In this case, a trace amount of localized base initiates the degradation, which in turn propagates through the material in an amplified manner. The results demonstrate the potential utility of these new generation polyurethanes in enhanced disposability and as stimuli responsive materials. 
    more » « less